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0< p<<0,01083 .. .; 0,016376 . . . < p < y; = 0,024293. . . 8.5)
My < u << 0,038520. ..

system (5.3) has no other solution than the trivial. Hence we have the following theorem.

Theorem 5. The triangular libration points of the three~dimensional restricted three-
body problem is Lyapunov stable for all values of the parameter p from the interval (8.3).
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ESTIMATE OF THE STABILITY OF A DYNAMIC SYSTEM ON THE BASIS
OF THE QUASISTATIONARITY PRINCIPLE *

YU. M. VOLIN

The following problerm is ferrulated and sclved: in what cases, and on what
basis for examining the stability of the statiorary sclution of a
"quasistaticnary" syster can we judge the stability of the stationary
solution of the initial systen.? The thecrems which formulate the necessary
and sufficient conditions of the stability are proved. It is shown how

the results obtained can be used to examine the thermal stability of a
chemical reactor.

1. Suppose it is reguired to examine the stability of the stationary state of a dynamic
system. When using Lyapunov's first method this problem reduces (if we do not consider special
cases) tc the problem of verifying the stability of the zeroth solution of the linearized
system. We will assume that the latter can be represented in the form

dy ) a- . —_ D -
T='_1y_B':' a—{::(‘y—D:. y:}? . = R (1.1)
We will also introduce the notation z = (y,.....¥yp 2. ..., 5)7, m + 1 = n, where the index

T denotes transpositicn,

*Prixl.Materm., Mekhan.,49,3,36¢-376,198%



We will call the specified matrix stable (strongly stable), if all Rek; << 0 (Rek, < 0).

and unstable, if i exists, for which Re i; >> 0, where 2; are the eigenvalues of the matrix.
Suppose

F AB

“ i D

1

The problem consists of obtaining the conditions of the stability of the matrix F.
Henceforth we will assume everywhere that D and F are non-degenerate.

Expressing z from the equation Cy -+ Dz =0 and substituting it into the first Eq.(1.1),
we will obtain a linearized "quasistationary" system

dy/dt = (A — BD"1C) y = (4 + BK)y = A%y (1.2)

We will call the matrix A* gquasistationary.

We will distinguish the case m =1, which in practice is of independent importance.

We will formulate the following problem: under which conditions can we draw a conclusicn
from the stability or instability of the stationary state of the quasistationary system about
the stability or instability of the stationary state of the initial system?

By virtue of the results connected with A.N. Tikhonov's theorem /1/, it is natural to
expect that if the staticnary state of the z-system

dz/dt = Dz (1.3)

is asymptotically stable and the system fairly rapidly relaxes to it, then the stability or
instability of the stationary state of the guasistationary system determines the stability
or instability of the stationary state of the initial system. It is interesting, however,
to obtain working estimates enabling us to draw a conclusion about the stability or instakility
of the matrix F from the stability or instability of the matrix A*. This paper is aimed
at obtaining those estimates. Note that, as will follow from the results obtained below, an
estimate of the rate of relaxation of the z-system is not needed in a large class of cases
tc obtain the necessary conditions of stability.

The formulation of part of the results of this paper is given in /2/.

2. We will first obtain the necessary conditions of stability.

Lemma 1. The parity of the number of real positive eigenvalues (bearing in mind theix
multiplicity) of the matrix F is the product of the corresponding parities for matrices A~
and D, determined using the rules cf Boolean algebra: PXP=0XO0=P, PX0=0XP=0
(P denotes parity, O denotes odd parity).

Proof. We will use the following representation (see problem 2.4, ch.l in /3/):
%
det F= [] i = avtmttn @.n
KRS |
where 7; are the eigenvalues of the matrix F. From (Z.i] it follows that: ...l ={*. ..
Lo ®) X (g B where A, u; are the eigernvalues of the matrices A* and D. All J.=(
and, consequently, all A= 0. Suppose the numbers of positive real eigenvalues of the

matrices F.A* and D egual k,.A, and k, respectively. We have (gince the number of complex
eigenvalues of the real matrix is even}

SEL (2« . A = (1T sgn (g ) = (=17
SgD (py - . . py) = (=117
Consequently, (=) = (—=1)""s and the lemma is proved.

The following theorem is a simple corollary of Lemma 1l:

Theorem 1. Suppose the matrix D is stable. Then the instability of matrix F follows
from the instability of the guasistationary matrix A* when there is an odd number of positive
real eigenvalues. When m = 1 the instability of F follows from the instability of A¥
Theorem 1 formulates the necessary conditions of stability. It is essential that there
is an additional requirement about the odd number of positive real eigenavlues of the matrix
A* in the formulation of the theorem: in general the instability of the matrix F does not
follow from the instability of the matrix A*. A corresponding counter-example can be
constructed for the case n =23, m =2

3. Let us proceed to the sufficient conditions of stability. When deriving these
conditions we will confine ourselves to the case m = 1. For this case B is a row-vector,
K is a column-vector and 2 and A* are numbers.

Suppose further that z* = Ky = —D™'Cy, Az =z — 2%, 8z = Az/ |2* | when z* % 0, where [z}
is the Euclidean norm z. We will assume that C 5 0 (therefore, K= 0). After transformations
we obtain
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dy/dt = (A* -~ sgn (y) | K | Béz) y = Ay (3.1)
dAzjdt = DAz — Az* (3.2)
dbz/dt = Dbz — A (b2 + L) (L = sgn (y) K/ | K |) (3.3)

Lemma 2. Suppose when 0t
H
sW)=RE)+ (S 00(()dy; «ROSR (3.4)
@

where S is a P X B-matrix, and the functions R (), § (-, ') and @ (-) are continuously
differentiable. Suppose also

r(t)=|R@t)l, s= max [S(T].v‘l'g)l
0< T, u<

|$|= max | Sz, <z )
and ¢ () is a non~decreasing function. Then, if the equation
at)=r(t)+ sp(a(r)dr (3.5)
0

has a solution in [0, t;}, the following estimate holds:

lz ()] < a(t)

Proof., Suppose a, (1 satisfies Eq.(3.5) with r() replaced by r (t)=r{) e where ¢

is a small positive number. Suppose ¢ is the minimum t for which a (1) = |z (1}|. Then (>0
and [z{|<a {7 when - 1<, But by virtue of the latter, and bearing in mind (3.4}, we
have -
Pz () i<retty = § oo ia, 800 = 2, (1)
4

which leads to a contradition., Therefore jz(i]<=.(0 for all (10, 4], Letting e~0, we
will obtain the statement of the lemma.

Lemma 3.Suppose a,(f) is a scalar function which satisfies the equation

i
@ (t)=r(t)+ S fa (2 (1)) d (3.6)

n [0, t,] and suppose f,{a) is a non-decreasing function &, whilst 0<f, (@) < f;(a) and the

functions r{#), f; (a). /, (&) are continuously differentiable. Then the sclut;on of the eguation
1

a()y=r(t) = i1 (@ (1)) dr (3.7)

exists in [0, ;] and for all ¢ = [0. 1] the following inequality holds:

a; (1) <<, (1)

Proof, Suppose first that j () <j (e for all «a In some neighbourhood v, 1) o, (1)
exists and g, (1 < a, (1 when 1> 0 It is obvious that «;() can continue as long as the
inequality o, {H < =, (#} holds. Suppose " is the minipum ¢>¢ for which ea;{() =a, (5. But

o, (1"} < {1 fellows from the conditions of the lemma, which implies a contradiction.
To prove the lemma in the general case we will introduce f,,(z) = j,(2) — ¢ and then proceed
to the limit as € 0.

Lemma 4. Suppose when = 0.1}
t
a(t)=r(t) -~ Xsa (t)dr (3.8)
¢
and s> 0, r () > 0 ané the function r (-} 1is continuously differentiable. Then
a(t) < r{t) = rmax (e’ —1);  rom= ggt‘r {1} 3.9)

The statement of Lemma 4 follows from the known representation of the solution of Eq.
4
a(t)=ellao+Se:(1—t)r'(1)dr (3.10)
0
Suppose further that A4* « 0. Consider the solution of Eg.{3.3) in the interval [0, 8],

in which [y () [> 0 (in this interval &:(!) remains finite)., By virtue of well-known results
of the theoryof ordinary differential equations /4/ we have

(3.8)



H
8z (1) = Fp (1) 8z, -SFD(t"*B)‘T (6z(8)) (52(8) + L}dB;  Fp()=z(t)z(0)" (3.11)
¢
where z () is a fundamental matrix of the solutions of the uniform system (1.3), 8z = 8z (0).
Suppose matrix D is strongly stable. We will introduce the following parameters which
characterize the relaxation processes of a uniform system to a stationary state:

tp==max min 1 | Fp{t)z]== 12}z (3.12)
2z 1>0

g= wax [Fp(t)zo], |z|=]z(0)]=1 (3.13)

oIy J

The parameter tr is the minimum time of the guaranteed half decrease of the norm of
the initial phase vector :z, (here considered as the relaxation time of the z-system), and

g is the maximum "buildup" of the phase vector when relaxing in accordance with Eg. (1.3) to
the state 2z =10 during the time t;. By virtue of the strong stability of matrix D the

guantities {5 and g are finite, and g > 1.

To facilitate further understanding we will first outline the following considerations
and logical transitions.

Consider the motion for which  y > 0. At some instant ?;, < ¢p the egquation| Fp (4} 6z, !

i

1,18z, occurs. We will find the conditions at ¢, > 0. for which any & (1) with |8z |<C ¢

is limite¢ in [0.1] and
¢,
[P (0 —0).3(6:8)(8:(8) — L)d6| 2000
el

When these conditions hold the quantity 8z {f) with 6z, < ¢, is bounded over the whole
interval [0. -ec) and, at least, periodically falls within the sphere V., of radius ¢
with its centre at the origin of coordinates. At the same time it appears that for all &z, =
V., with the exception of §:, from some subspace of the space E', 8z {t) —» 8z, a5 ¢ — +oc
and 8z, = 1, is the staticnary point of system (3.3). Hence it follows that 4 (8z,) is an
eigenvalue of the matrix F and A (8z,) = max; Re %;. We will supplement the conditions
obtained with the condition which guarantees that the inequalities I {62) < 0 hold when
b= V. Then the asymptotic stability of the zeroth solution of system (1.1} follows
from the validity of the conditions introduced, and estimates for the eigenvalue with a
maximun real part are obktained.

We shall present some calculations. Applying Lemma 2 te Eg.(3.11), we obtain: |&:(hi<
o, {ty  for t< = t{bz) <1, where

t
() =d i) =g iAot =g\ A B ot (B K[ Bim (8 54" fm (8) a8 dui=]Fp () s (3.34)
8

{assuming that Eg. (3,14 has a solution). By virtue of Lemma 3, if w () satisfies eguation
t

st s £ g lAT IS A pualy 4t (3.15)
o
pe= g2 B VK, — 1A%
in {4y and the ineguality
ainis t, te [t 4yl (3.16,

holds, then Eg.(3.14) has a sciution and [&:(n] < o (1) < o {tn
Suppose further that (6| e. ¢ > ¢ Using Lemma 4 as applied to Eg.(3.15), we obtain

the estimate
et {3.47:

o {1 @ (1) + oceg (Pt — 1) gt | A%
It follows from (3.17) that ineguality (3.18) will hold if
cw g T — vy (3.18;
Suppose at the instant 1
1Bz () < RS
Since by the definitior of  the condition d (5= 1t,]ds | <l holds, then ineqguality
{3.19) holds if
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-

cog (6P — 1) + gty | A% | &P < Hyeo (3.20)
From (3.20) and the condition ¢, >0 it follows that
gty | A% |ePh " 1 .
@Sy (=< (3-21)
Suppose the following inequalities hold
t
qt |A'|¢pD 1 -
L <— DAty = 3.22)

0 =
<o Yp—q ("D — 1)

Then when ¢ < ¢ < ¢ inegualities (3.18) and (3.21) hold.

By considering the calculations in reverse order, we can verify that when conditions
over the whole interval [0, - ) remains

(3.22) hold, if ¢ <<, and |8z < ¢, then &z()
all the time in a sphere of the unit radius and, at least periodically, falls within the
sphere V.
We shall determine
(3.23)

_._'___A*‘ [ = — D1 *::4-——81{
Ry= b (K DAIC, A*= 4 = BK)

Since (when y > 0) 4 (6:) = A* +— | A | Béz, the following conditiorn holds:

g (62) < 0 when |6z |< R,
A (62) = 0 when 6z = R,B7, |B |

We will require the following ineguality to hold:
<< Ro (32\—))

the condition 4 (82) < 0 periodically holds.

Then for 6z (1)
D is strongly stable, C =0, A* <0 and the following

Theorem 2. Suppose the matrix D

ineguality holds:
ty | A* <<y (Ro. Q) (3.26)
are determined using conditions (3.12), (3.13) and (3.23), and % (R, ¢)

where Ip.g and R,
¥) of the equation

is the only root (for the variable

. i 1 . 2 \ . .
P("vROvQ)—mHH\Hm—q—e.\p<——/,qf7“+1))—/)- (3.27)
. 2 vy / 2 -1
qrexp (g (5 + 1)) 5 = o(esn (9 (£ + 1))—1)]* =0
in the intervel
lo (1 (2 1 -
(<<t = (3.25)
Then the matrix F is strongly stable, whilst the quantity 7;, (Re’,, = max; Re ;) is
real and satisfies the estimates
(3.29)

A* — KB oK hy <A~ |A||B e, <0

Proof. The existence and unigueness of the roct of Eq.(3.27) follows from the continuity
and monotony of P (y, R, ¢), if we bear in mind that P (0, Ry, ¢) = min (R, 1), P (. R, ¢q) = —oo.

Further, as we can verify
gty | A*|exp (i [A* [ (2'Re = 1))
L D - (3.30)

G = Vo= g exp (tp [A*] (2[R — 1)) — 1)

1
q:-q—exp (—— ZD|.4*I(2/R0 -+ 1))-— ID;A*I

Therefore P (tp |A* |. Re. g) = min (R, ¢;) — ¢; and condition (3.26) is the same as the

condition
0 < ¢; << min (Ry. ¢,) (3.31)
Suppose the eigenvalues of the matrix F are different. Consider the motion of the point

of system (1.1) with initial conditions which satisfy the relations

y(O) >0, bz = (z(0) — Ky (0) (1K [y (O) <o =1¢4

I
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and the motion 6z (1) corresponding to it. Using what has earlier been proved, the quantity
61 (t) remains bounded when 0 < t<C -+ o and, therefore, y(t)>0. (If for some t we have

y (t) = 0, then for this t we will have |8z () |= + o0.) We will call these motions

separate. Suppose £ is a unit eigenvector, satisfying A, (Re};, = max; Re 4;). The quantity
£,50, since when %, =0 separate motions exist, for which 8z(f} is not a bounded function,
Therefore, 4, and § are real (otherwise separate motions, for which y (1) for fairly
large t would complete the oscillations around zero, would exist).

We can assume that § > 0. For all the separate motions, with the exception of those
which are completed at some hyperplane determined by eigenvectors which differ from §E, r (1)
jz(t) -t as t-» + . For those motions
” R n— &K
6&(1)-—>6~*—— —————*—El]KI
and this means that in the sphere |V, system (3.3) has a stationary point. But A (62,) = hyy
(see (3.1)). Therefore, bearing in mind {(3.25), we conclude that the estimates (3.29) hold
and the matrix F is strongly stable,

To prove the theorem in the general case we will intorudce a family of matrices F {g): F (o)
depends in a continuous way on ¢. F{0) = F, F {0) has different eigenvalues when 03 (. As
can be shown, g¢. tp, 4% K and B are continuous functions of the parameter ¢ (while F (o)
remains strongly stable). Therefore for fairly small ¢ the inequalities (3.31) hold andg,
therefore, estimates (3.29) hold., Proceeding to the limit as o0, we will obtain the
statement of the theorem for F (0) = F. The thecrem is proved.

The quantity 1 }A4* | characterizes the inertia of the guasistationary system, and i
characterizes the inertia of the z~system. Therefore ineguality (3.26) shows that from the
inequality 4* << 0 we can draw a conclusion about the stability of matrix F in those cases
when the inertia of the z-systerm is fairly small compared with that of the guasistationary
system,

Note that the function y (R, ¢) Gecreases as g increases and R, decreases.

Note 1. In the formulation of Theorem 2 it is assumed that (=0 and, therefore, A=0,
If ¢=0 then, as we can show, the eigenvalues of the matrix F include 4 = 4*and the eigen-
values of the matrix D. The-efore for this case the strong stability of F under the condition
of strong stability of D and 4* < U is trivial.

Note 2. The statement of Theorem 2 remeins valid of the parameters ¢, and g are
replaced by their upper estimates, and the parameter R, is replaced by its lower estimate.
The validity of this statement follows from the fact that (see (3.30)) ¢ is an increasing
function and ¢ is & decreasing function of the parameters 1y, and g.

To use Theorem 2 we need to know Ip and g or the upper estimates of these paramezers.
The Lyapunov-functicn methed is an effective way of obtaining these estimates.

Theorem 3. Suppose } (z) is a positive definite uniform Lyapunov functior, of the 2=
system (1.3) (thereky for V (z) the condition V (az) = aV" {z) holds when a > (), which satisfies
the conditions

max [s| When ygy=1 0 an
minizl wher, Vigt=1 g (3.32)
dUde < eV (e << ) (3.33)

Then ¢ and fp' = In (J
The statement cf the thecren for ¢
Lemma 3.

'

‘e | are upper estimates for ¢ and to .
is obvious. The statement for t;’ follows from

Note 3. Note that for the asymptotic stability of the zeroth solution of (1.3) a uniform
Lyapunov function always exists, satisfying the inequality (3.33) with e= (Reply,,. where

(Re g,y = max;Re u, (. are eigenvalues of the matrix D). In fact, confining ourselves to the
non-singular case, we will assume that all yu, are different. We will reduce D to 2 diagonal
form using a non-degenerate linear transformation of §. We can show, by direct verification,
that 1 = (52, 53"" is a uniform Lyapunov functien for which inequality (3.33) holds with =

(Re ui

max”
Tt followe from the above that condition (3.26) in Theorem 2 can also be written in the

following form:
{A% o (20%)
[{Rew)

7 <7 {Re. ¢%} (3.34)
max

where ¢* it the parameter which satisfies condition (2.32) for Lyspuncv's funcilen of the
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z-system, for which inequality (3.33) holds with e = (Rep)pyy-

When there are no direct analyticai resuits in a number of cases the upper estimates for
tp, and g can be found from the experimental data or on the basis of a combined approach

which combines the analytical and experimental results.

4, In the theory of a thermal explosion the stability criterion, defined by the sign of
the derivative dQ/dT |5, 6], where Q = @, — @,, @, is the amount of heat dissipated in the
reactor and @, is the amount withdrawn, is well known. The stationary states for which

dQdT < 0, are stable, and the states with dQ/dT >> 0 are unstable.

This result assumes, strictly speaking, that the dynamics of the process are determined
by one differential equation. Tests of the analytical basis of this criterion as applied to
a wider class of cases were only made for second-order systems (for an ideal-mixing reactor,
whose dynamic process is determined by the temperature concentration). It was shown that
for these systems the criterion of the sign of dQ/dT generally gives the necessary - but not
the sufficient -~ conditions of stability /7/. This criterion gives the sufficient conditons
of stability when the relaxation time of the concentration model is substantially less than
that of the thermal model /7, 8/. On the other hand, numerous calculational experiments
show that the criterion of the sign of d0/dT ocbviously holds in an extremely wide class of
cases.

We will use the result of paras. 2 and 3 to investigate the thermal stability of the
stationary state of an ideal-mixing exothermic reactor. We will consider the following
dynamic reactor model:

HT-%,{—=0(T»C)=01(T,C)_QQ(T,C)= )
cC(r—rorT
Z(“Aﬂi)ri(T,C)- __”.L_T_")_.KTS(T_TC)
ac. C.—C.
Hc-_IJ=UIJ(T’C)_ : T £ ! j=1»2y-..1l (4.2)
nTen (4.3)

Here C and T are the vector of concentrations and temperature in the reactor, C(j, is
the concentration of the j-~th material at the reactor input, 7T, is the temperature at the

reactor input, t is the time, Hr, H. are the heat and material holding capacities, AH;, is

the thermal effect of the i-th reaction, (, is the heat capacity, Kr is the heat transfer

coefficient, S is the specific surface of the heat transfer, T is the coolant temperature,
T is the conditional contact time, r; is the rate of the iI-th reaction, w; is the rate

of formation of the j-th matter, and (y;;) is the stoichiometric matrix.

We will call system (4.2) a concentration model with a fixed temperature T.

Suppose (T, () is the stationary solution of system (4.1), (4.2). The following theorem
directly fcllows from Theorem l:

Theorem 4. Suppose the stationary solution (; of the concentration model (when T = T)

is asymptotically stable. Then the condition

dQ.dT (T,. C (T.) << 0

—
e
s

is the necessary condition of the stability of the solutien (7, C.).
In Eg.(4.4) C(T) is the quasistationary concentration, determined by the equations

U‘j(T,C)—(Cj—-Cjo)T=O, j=1,2....,l (45)

Therefore, the criterion of the sign of dQ dT generally gives the necessary condition of
stability, if the staticnary solution of the concentration model is asymptotically stable.

We stress that this result holds without any demands on the relaxation time of the concentration
model.

The asymptotic stability of the concentration model, which is required for the application
of Theorem 4, holds in a wide class of cases (this also determines, first of all, the
justification of separating the problem of thermal stability from the general problem of
reactor stability). At the same time the presence of concentration stability can often be
proved globally for a whole class of kinetic relations /9, 10/.

To use Theorem 2 (which formulates the sufficient conditions for stability) it is
necessary to have, besides the proof of the asymptotic stability of the stationary solution
of the concentration model, upper estimates of the parameters fp and g also. Lyapunov's-
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function method provides an effective approach to obtaining these estimates (and to proving
the stability of the concentration medel). We will write the equations of the concentration
model

e (4.5)
}.;—.ul
1 (7. CY ,

(pi,=,ﬁ:.._.z.;5;_#), =121

We will term the following system a shortened model:

Theorem 5. Suppose the zero-th solution of system

1

dAC, AC, .
a’t‘ = pj;‘ACkwTT-TY \T ]-——1--”‘..:1 (-’!5)
c

il

is asymptotically stable and a uniform positive definite Lyapunov function exists for this
system which satisfies estimate (3.32) (with z replaced by AC), and inegualities {(4.4)
hold and

F ctH In (297 L. o
!*-T (T, ;E“—lc‘_—.(T‘—(\/'/.(R(HQ) (1.9}
Then the staticnary state of system (4.1)-(4.3) is asymptotically stable.

Proof. It follows from the uniformity of V (AC) that 1V (AC) = (8V 0AC (AC)) AC. We will
obtain an estimate for d1 di by virtue of Egs.{4.6)

a7 e PL( oy nL—nv - (ty— 1 ¥ 0

FF T Texc Tit, T THan H
- € < €

The statement of the theorem is now a direct corclilary of Thecrem 3.
Consider the class ¢f kinetic relations which satisfy the relations

A~

P, <20, pap0 for js=l pa 00 kF=1,2,...,1 (4.10)

[
n

Note thet (4,10} holds if there is no autocatalysis and each rate of reaction in each

direction is determined by one "leading" component.

For this class, as is well known and easily verified, V = X 1AC; | is a Lyapunov function
of the shortened model (4.7). We can alsc show that g = ['s Thus, for this class cf kinetic
relations conditior (4.9) takes the form

L de op i
| =7 TH b (20 Ly (R )
Condition (4.9) (assuming that 4 dT7 7 0) is eguivalent tc the conditon
7o AL St + gg, 7t s
2 B BN 3.1
ALK — = (3.11)
L E

where T = HetC,. T = H1 (
thermal and concentration mo

e guantities car be considered the time constants of the
els)
For a catalytic reactor ¢

LR T 40
i#—7~"*m~,::-7]—.—-<3, Rezt, ¢<x2

Then condition (4.11) will hold if T7T < 0.000. The latter condition usually holds (in
/8/ an example is discussed for which /=1 and 777 = 00027,

In cases when there are no analytical results, experimental data can be included to justify
the use of Theorems 1 and 2. Suppose kinetic analyses are carried out in a circulating
laboratory reactor which operates in a mode that is clese to that of ideal mixing /11/. In
such a reactor the heat transfer conditions are usually very good and we can, in conformity
with the definition of stability, confine ourselves to the concentration eguations which in
this case are the same as industrial ones for laboratory apparatus. It therefore follows
from the stability of the stationary mode of the laboratory reactor that the concentration
model of the industrial process (for eguality of 1 and (,) is stable. &t the same time
the quantities 1, and ¢ can be estimsted using dynamic experimental data of the laboratory
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apparatus.

i If the concentration models of the laboratory and industrial reactors are different, the
matter is more complex. Here also, however, experiments in the laboratory reactor can in
some cases provide useful information for the application of Theorems 1 and 2. For example,
for the case of a flowing-circulation laboratory reactor, as we can show, the following
formula connecting the characteristic values holds:

1+ wH p’ 1—9
¥ ¥

g(p) =1+ 1Hp" (4.12)

where p',p” are characteristic values of p for the transmitting functions of the laboratory
and industrial reactors, g(p)/ is the transmitting function of the feedback section in the
laboratory reactor (I is a unit matrix), and y is the ratio of the flow at the input to the
laboratory reactor to the flow which passes through the reaction volume. It is assumed that
the industrial xeactor operates for the same Cyp as a laboratory reactor, and has 1= 1/,
where T is the conditional contact time for the reaction volume of the laboratory reactor,

5. The importance of the conditions of stability obtained is determined in the following
way.

The conditions of stability obtained on the basis of the quasistationarity principle
have a physical meaning in a number of cases and enable us to cobtain estimates of a general
character. In particular, the criterion of the sign of the derivative dQ/d] in the problem
of estimating the thermal stability of the reactor has a physical meaning.

One can also note the calculational simplicity of examining stability on the basis of
conditions determined by Theorems land 2, which is particularly useful for a large-size 2z-
system and the necessity for frequent calculations of the stability of the stationary states
of the process (with different parameters). The latter occurs, for example, if the process
is optimized and the condition of stability figures as one of the optimization limitations
/12/.

Finally, the conditions of stability obtained can be used to a certain extent when the
dynamic equations of the object are not completely known. To use Theorems 1 and 2 it is
sufficient to know the dynamic eguations conly for Yi. The remaining equations can be

stationary if the estimates of the parameters {p and ¢ are known from the experimental data
or by analogy with other processes.
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