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0 < p < 0,010913. . .; 0,016376. . < p < /.I~ = 0,024293. . . (8.5) 

/.L~ < p < 0,038520. . . 

system (5.3) has no other solution than the trivial. Hence we have the following theorem. 

Theorem 5. The triangular libration points of the three-dimensional restricted three- 
body problem is Lyapunov stable for all values of the parameter p from the interval (8.3). 
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ESTIMATE OF THE STABILITY OF A DYNAMIC SYSTEM ON THE BASIS 
OF THE QUASISTATIONARITY PRINCIPLE l 

Y’d I+ . 2. VOLIN 

The following probl em is for-_lated and sclved: in what cases, and on what 
basis for examining the stability of the stationary sclution of a 
"quasistationary" system can we judge the stability of +be stationary 
solution of the initiai system? Tine thecrens which formulate the necessary 
and sufficient conditions of *the stability are proved. It is shown how 
the results obtained can be used to examine the thermal stability of a 
chemical reactor. 

1. Suppose it is required to examine the stability of the stationary state of a dynamic 
system. When using Lyapunov's first method this problem reduces (if we do not consider special 
cases) to the problem of verify' ing the Stabiiity of the zeroth solution of the linearized 
system. We will ass.zme that the latter can be represented in the form 

d&J ;ii- =Jy - B;. $ = Cy - Dr: ysRII"'. _-CR' (1.1) 

We will also introd.Jce the notation s = (y,. ., ., y,.:,. . . . . z,)~, m T i = n, where the index 
T denotes transposition. 

l ?ri~l.j.~te.~..Mekhan., 40 2 ^L _,_,36&3/6,19c: 



We will call the specified matrix stable (strongly stable), if all Re %, <O (Re7.,<0). 
and unstable, if i exists, for which Re Ai> 0, where hi are the eigenvalues of the matrix. 

Suppose 

The problem consists of obtaining the conditions of the stability of the matrix F. 
Henceforth we will assume everywhere that D and F are non-degenerate. 

Expressing z from the equation cy .+ Dz = 0 and substituting it into the first Eq.(l.l), 
we will obtain a linearized "quasistationary" system 

dyldt = (A - BD-‘C) y = (A + BK) y = A*y (1.2) 

We will call the matrix A* quasistationary. 
We will distinguish the case m = 1, which in practice is of independent importance. 
We will formulate the following problem: under which conditions can we draw a conclusion 

from the stability or instability of the stationary state of the quasistationary system about 
the stability or instability of the stationary state of the initial system? 

By virtue of the results connected with A.N. Tikhonov's theorem /l/, it is natural to 
expect that if the stationary state of the z-system 

dz!dt = Dz (1.31 

is asymptotically stable and the system fairly rapidly relaxes to it, then the stability or 
instability of the stationary state of the quasistationary system determines the stability 
or instability of the stationary state of the initial system. It is interesting, however, 
to obtain working estimates enabling us to draw a conclusion about the stability or instability 
of the matrix F from the stability or instability of the matrix A*. This paper is aimed 
at obtaining those estimates. Note that, as will follow from the results obtained below, an 
estimate of the rate of relaxation of the z-system is not needed in a large class of cases 
tc obtain the necessary conditions of stability. 

The formulation of part of the results of this paper is given in /2/. 

2. We will first obtain +he necessary conditions of stability. 

Lemma 1. Ti?e parity cf the number of real positive eigenvalues (bearing in mind thclr 
multiplicity) of the matrix F is the product of the corresponding parities for matrices -1" 
ano D, determined using the r.Jles cf Boolean algebra: PxP=oxo=P,Pxo=oxP=o 

(P denotes parity, 0 denotes odd parity!. 

Proof. We xill use the fcliow;ng representation (see problem 2.4, ch.1 in /X/1: 

dplF= n i,:zd*l I*.x!t!D (2.11 

1 1 

where i, are the eiger.va,ues 0 i the ir,atrix F. Fro:_ i2.l: it follows +&at: i., . i., = (i.l* 
L,‘) x iv,. p.1, where hi*. p:. are tl-,e eigenvalues cf the matrices A* and D. All i.; I c I 
and, consequently, 
matrices F.A* and 
eigenvaiues of the 

I 

all i’ 0. ‘, i Suppose the numbers of positive real eigenvai.des of the 
S equal k,.h, and k, respectively. We have (since tie r.;rmber of complex 
real matrix is even? 

Consequently, (__1)” = (_i,‘.“‘.’ and the iemma is proved. 
The following theorem is a simple corollary of Lemma 1: 

sgn (i., i.,) = ,__1,‘-“. IpI (I~>’ km’) = (-1;f”-;’ 

sgn (pl p:) = (-l;!-‘.a 

Theorem 1. Suppose the matrix D is stable. Then the instability of matrix F follows 
from the instability of the quasistationary matrix A* when there is an odd number of positive 
real eigenvalues. When m = 1 the instability of F follows from the instability of A* . 

Theorem 1 formulates the necessary conditions of stability. It is essential that there 
is an additional requirement about the odd number of positive real eigenavlues of the matrix 
A* in the formulation of the theorem: in general the instability of the matrix F does not 
follow from the instability of the matrix A*. A corresponding counter-example can be 
constructed for the case n=3,m=2 

3. Let us proceed to the sufficient conditions of stability. When deriving these 
conditions we will confine ourselves to the case m = 1. For this case B is a row-vector, 
K is a column-vector and A and A* are nlumbers. 

Suppose further that z* = Ky = -D-‘Cy, 1; = 2 - z*, 6z = Azi' 1 Z* 1 when z* # 0, where / 2 : 
is the Euclidean norm 2. We will assume that C+ 0 (therefore, K# 0). After transformations 

we obtain 
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dyldt=((A*Isen(y)IKIBbz)y=Ay 
dAzjdt i= DAz - .ia* 

&ldt = D&z - A (62 i .!J (t = sgn (y) Ki I K I) 

Lemma 2. Suppose when 0 < t Q t, 

t(t}=R@) i- ~s(t,~)~(~(~))dl; .Z,R,@fR~ 
n 

where S is a 8 X p-matrix, and the functions R(.), s(+, a) and @ (,)are continuously 
differentiable. Suppose also 

r(t)==IR(t)l, SE= max 
OGT,. PG, 

[S(TI,Q)) 

ISI= max ISr1, 
lxt-1 

I~(4l~cF((1~I) 

and q(.) is a non-decreasing function. Then, if the equation 

a(t)=r((t)+~s~(a;(r))dt 
0 

(3.1) 
(3.2) 
(3.3) 

(3.4) 

(3.5) 

has a solution in [O,t,], the following estimate holds: 

I I (2) I < a (t) 

Proof. Suppose bc (0 satisfies Eq.(3.5) with r(l) replaced by r,(L) = r(f)+ E. where E 
is a small positive number. suppose I' is the minimum t for which a,(l)= Izfr)l. Then I' > 0 

and /I (I) / < aE (0 when 1' '_ t < t’. But by virtue of the latter, and bearing in mind (3.4), we 
have ,' 

ir(l)i<~E(f')-C~$jzt(ei:dO;-~p(~') 
6 

which leads to a contradition. Therefore 1 I(I) J <g,(f) for all I E IO, tll. Letting c-0, we 
will obtain the statement of the lemma. 

Lemma 3.Suppose a2 (t) is a scalar functilzl which satisfies the equation 

in 10, t,] and suppose fz(a) is a non-decreasing function a, whilst O< fi (a)<jz(a) and the 
functions r (t),~~(a~.~*(~) are continuously differentiable. Then the solution of the equation 

1 
(3-i) 

exists ~.n [0, t,] and for all 1~ IO. t,l the following inequality holds: 

cl (t) < aI (r) 

Proof. Suppose first that j,(ai<j?(~t for all a. In some neighbourhood [v,F) a1 (ii 
exists and a, (0 <a, fti when 1 > (1. It is obvious that =I (G can continue as 1011g as the 
inequality al (fi < '3* (I) holds. Suppose f* is the minimum t>t' for which a1 (0 = a2 (I:. But 
al(f‘i<a,(Fj fellows from the conditions of the lemma, which implies a contradiction. 

To prove the lemma in the general case we will introduce j,, , (~ri = jl!,z) - F and then proceed 
to the limit as .? - (I. 

Lemma 4. Suppose when 1 E IO. t,l 

a(t)=r(t,-isa( 
6 
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and s> 0, r(t)> 0 and the function r(,f is continuously differentiable. Then 

a {t) < r(t) -L r,., (ec! - i); rmrx = o%y* r (7) (3.9) 1 

The statement of Lemma i follows from the known representation of the solution of Eq. 
(3.8) , 

a (t ) = e”Q e*(‘-‘)r’ (T) dT (3.10) 
0 

Suppose further that A* < 0. Consider the solution of Eq.i3.3) in the interval 
in which /g(t) I> 0 (in this interval &z(t) remains finite). 

IO, t,l, 
By virtue of well-known results 

of the theoryof ordinary differential equations /4/ we have 



t 6z (t) = FD (t) 6ze - .I FD t - ( 0) j: @z (9)) PI5 (8) + L) de; FD (t) = z (t) 3 (0)~’ (3.11 
0 

where z(2) is a fundamental matrix of the solutions of the uniform system (l..3), ~ZE, = &z(o) 
Suppose matrix D is strongly stable. We will introduce the following parameters which 

characterize the relaxation processes ofauniform system to a stationary State: 

The parameter tra is the minimum time of the guaranteed half decrease of the norm of 

the initial phase vector in (here considered as the relaxation time of the z-system), and 

g is the maxim>um "buildup" of the phase vector when relaxing in accordance with Eq.(1.3) tc 
the state z = 0 during the time to. By virtue of the strong stability of matrix D the 

quantities tfi and g are finite, and q> 1. 
To facilitate further understanding we will first outline the following considerations 

and logical transitions. 
Consider the motion for which Y>O. At scme instant 1, f tn the equationjFn(t,)&,, I = 

1 2 j 6;, j occurs. We wili find the conditions at co> 0. for which any 62 (t) With i 6.7~ ! -< Cci 

is limited in [O.r,] and 

Wiien these conditions hold the quantity 6~ if) with 6~~ .< cO is bounded over the whole 
intervai IO. -0~) an6, at least, periodically falls within the sphere I', of radius CO 
with its centre at the origin of coordinates. At the same time it appears that for all 6zOF 

r;** with the excepiicn of bz, from some subspace of the space E’,6:(t)-+ 62, as t-t +cs 
ana &, E ICC is the staticnary point of system (3.31. Hence it follows that A (dz,) is an 
eigenvalue of the matrix F a9 .g (a;,) = ma*, Re j+. We wkil supplement the conditions 
obtained with the condition which guarantees that the inequalities .f (bz)<O hold when 
63 f 1Z. Then the asymptotic stability of the zeroth solution of system (1.1; follows 
from the validity of the conditions introduced, and estimates for the eigenvalue with a 
naxim~;c reai part rire ob$tarneZ. 

We shall FreSfnt some ca1c~ula:icr.s. Appl>tinc Lemzza 2 to Eq. 13.11:, we obtain: 16: {;I j $ 

e1 (0 for t & ii =i t (62,) Q ffi, where 

(assuming that Eq.(i.ll: has a solution). Ej virtue of Lemma 3, if e(t) satisfies ea_uatron 

*i:, 1 1#:,_-g!.-1' !- p;\Ojdt' [ (3.13j 

ii = 4 (2 6 ~4. j - i A’* ; ! 
i:, [ii. r,) and the inequality 

a ( : i ~<. 1. 1 E to, t,l (3.iOi 

holds, then Eq.(3,iSi! has a scl,tion and i6~(ti!<a,(t)<e(ti. 
Suppose further that j6rc I B cc. cO > 0. Using Lemma 4 as applied to Eq.i3.15), we obtain 

the estimate 
a (:? c* d (t, .+ ioq (P’* - 1) + qt j A * [ et (3.iTI 

it follows fro= (3.17) that inequality (3.:63 will hold if 

cg se_ P-'C'F" _ . . jA*/tl {%iB, 

Suppose at the instant II 

/ 6: jr,\ j < CO (3.59 

Since bj~ the definition Of il the co&ltiOr, d (l,s x= 1 ? j ,& 1 < ‘;2co holds, then inequ;a:f?$ 

(3.19) holds if 



cc4 k pi1 - :) + qt, 1 A* 1 P’, ( ‘/*co 

From (3.20) and the condition c,>O it follows that 
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(3.20) 

co, 
qtl ( A’ I& 

P’, 
1 

2~*_q(cP~“‘-l) ’ qcc -‘)F5 

Suppose the following inequalities hold 

o<c,= 
qt D 1 A’ 1 r@D 

‘/l - q (eP’D - 1) 
< ’ -p’D-~A*pD=er 

T’ 

(3.21) 

(3.22) 

Then when cl<cO<ccz inequalities (3.18) and (3.21) hold. 
By considering the calculations in reverse order, we can verify #at when conditions 

(3.22) hold, if c,<c,<c, and ld;,I,<c,, then 62(t) over the whole interval IO,- m) remains 
all the time in a sphere of the unit radius and, at least periodically, falls within the 
sphere I',,. 
We shall determine 

Rc, = *(It = - D-'C, A* = -4 .+ Bh') (3.23) 

Since (when Y > O)d (6;) = A* T 1 h’ /Bbz. the following condition holds: 

.-I (6z)< 0 when /6z I < R, 

.T (62) = 0 when 6: = RpBTt j B 1 
(:x1) 

We wi 11 require the fol lowing inequality to hold: 

c&R, (3.23) 

Then for 6e(1) the condition A (6z)< 0 periodically holds. 

Theorem 2. Suppose the matrix D is strongly stable, C# 0, A* (0 and the following 
inequality holds: 

ti, IA* 1 < x (R,. d (3.X) 

where tn. Q and R, are determined using conditions (3.12), (3.13) and (3.231, and x(RB. q) 
is the only root (for the variable y.) of the equation 

real 

P(x, Ro,q)=mir~(H,, $esp (-zq 1% + I):)-_%) - 

4% ev(zq ($ + l)j L+ - q(e.xp(xq($ + I))-I)]+=0 

in the interval 

(3.27) 

(3.25) 

Then the matrix F is strongly stable, whilst the quantity ;.l* (Re ;.ir= maxiRe Ai) is 
and satisfies the estimates 

A* - I A’ 1’ B I cl < i.i, < A* - 1 h’ jj B / cl < 0 (3.29) 

Proof. The existence and uniqneness 
and monotony of P(y., R,.q)% if we bear in 

of the root of Eq.(3.27) folLows from thecontinuity 
mind that P (O? R,, q) = min (Ro, I), P (xl. R,,. q) = --oo. 

Further, as we can verify 

c* = - : erp (- TV 1 .-I* / (2/Ro + 1)) - tc i .A* I 

Therefore P (TV I A* 1. II,. q) = mill CR,. cl) - cl and condition (3.26) is the same as the 
condition 

0 < cl < min (R,. c2) (3.31) 

Suppose the eigenvalues o f the matrix F are different. Consider the motion of the point 
2 of system (1.1) with initial conditions which satisfy the relations 

Y (0) > 0. 6z, = (: (0) - KY (0)) ( I A I Y VI) < co = Cl 
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and the motion 62(t) corresponding to it. Using what has earlier been proved, the quantity 
6s (t) remains bounded when O,< t< i 00 and, therefore, y (1) > 0. (If for some t we have 

y (1) = 0, then for this t we will have 1 h(t) 1 = -i- co.) We will call these motions 
separate. suppose E is a unit eigenvector, satisfying hi, (Re ?.;, = maXi Re hi). The quantity 
E,fO, since when El = 0 separate motions exist, for which &(t) is not a bounded function. 
Therefore, hi, and 5 are real (otherwise separate motions, for which y(t) for fairly 
large t would complete the oscillations around zero, would exist). 

We can assume that E, > 0. For all the separate motions, with the exception of those 
which are completed at some hyperplane determined by eigenvectors which differ from E, r(t) 
/r(t) i+ { as f+ A 05. For those motions 

and this means that in the sphere I;, system (3.3) has a stationary point. But A (62,) = i.,, 
(see (3.1)). Therefore, bearing in mind (3.25), we conclude that the estimates (3.29) hold 
and the matrix F is strongly stable. 

To prove the theorem in the general case we will intorudce a family of matrices F(o): F(c) 
depends in a continuous way on c. F(O) = F. F(o) has different eigenvalues when a+O. As 
can be shown, 4. tr,, A*,K and B are continuous functions of the parameter ci (while f (0) 
remains strongly stable). Therefore for fairly small o the inequalities (3.31) hold and, 
therefore, estimates (3.29) hold. Proceeding to the limit as o-+0, we will obtain the 
statement of the theorem for F (0) = F. The theorem is proved. 

The quantity 1 iA* ) characterizes the inertia of the quasistationary system, and lo 
characterizes the inertia of the z-system. Therefore inequality (3.26) shows that from the 
inequality A* <Cl we can draw a conclusion about the stability of matrix f in those cases 
when the inertia of the z-system is fairly small compared with +&at of the quasistationary 
system. 

Note that the function x(R,.qj decreases as q increases and R, decreases. 

Note 1. IE the formulation of Theorem 2 it is assumed that C?(j and, therefore, hlZ(l. 

If c = 0 then, as we can show, the eigenvalues of the matrix F include A = .4*and the eigen- 
values of the matrix D. The.efore for this case the strong stability of F underthecondition 
of strong stability of D and A' <U is trivial. 

Note 2. T'ne statement of Tbeorea 2 remains valid of the parameters fl> and g are 
repiaced by their upper estimates, and C;le parameter R, is replace5 by its lower estimate. 
The validity of this statement follows from the fact that (see (3.30)) c1 is an increasing 
function and c1 is a decreasing f-nction of the parameters tD and q. 

To use Tnec?ren 2 WE neeJ to ‘;Tio'G fi, and q or the upper estimates of these parameters. 
The Lyapunov-fcncticn me‘iico IS an effective way of obtaining these estimates. 

Theorex 3. S;:ppose 1(3/ is a positive definltt UnifOm Lyapunov functioq Of the Z- 
system (1.3) (thereby for 1‘ (:) the con3it;on T'(C) = al- (;) holds when (I > 0). w:hich satisfies 
the ccnditions 

Then CJ ’ and 
The statement 

Lemma 3. 

Note 3. Note 

dl‘ di I:< PI‘ (e < (1) (3.33) 

tr’ = III i”y’) : e i are upper estimates for g and to. 
cf C?E t:~.et~re~ for Q' is obvious. The statemerit for fi,' follows frorr. 

that for the asymptotic stab ility of the zeroth solution of (1.3) a uniform 
Lyapunov functior. always exists, satisfying the inequality (3.33) with e== (RepL);aI. where 

(Re P&x = max,Re )I, ($I. are eigenvaiaes of the matrix R). In fact, confining ourselves to the 

non-singular case, we will assume that all 9, are different. We will reduce D to a diagonal 

form using a non-degenerate linear transfo_%ation of 5. We can show, by direct verification, 

that I'= (sI,='. is a uniform Lyyapunov function for which inequality (3.33) holds with V= 

(he F'maX. 
It follows from the above tiat condition (3.26) in Theorem 2 can also be written ir *he 

following form: 

where g* is the parameter which satisfies condltic?n (3.32: for Lyapuncv's fnzct;on of :Y.e 



z-system, for which inequality (3.33) holds with c= (Ret&ax. 

When there are no direct analytical results in a number of cases the upper estimates for 
ID and g can be found from the experimental data or on the basis of a combined approach 
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H dT ,x=Q(T.C)=Q,(T,C)-Q~(TvC)= (4.1) 

2 
(-AHi)r,(T,C)- Cn(T; T0) -K,S(T--T,) 

H k C.-C. 
e+=u.,(T,C)--, T 

j=i,2,...,1 (4.2) 

u') = x I'j,Ft (4.3) 
1 

which combines the analytical and experimental results. 

4. In the theory of a thermal explosion the stability criterion, defined by the sign of 
the derivative dQidT IS, 61, where Q = Q1 - Q2. Q1 is the amount of heat dissipated in the 
reactor and Qr is the amount withdrawn, is well known. The stationary states for which 

dQ,dT(O, are stable, and the states with dQ'dT> 0 are unstable. 
This result assumes, strictly speaking, that the dynamics of the process are determined 

by one differential equation. Tests of the analytical basis of this criterion as applied to 
a wider class of cases were only made for second-order systems (for an ideal-mixing reactor, 
whose dynamic process is determined by the temperature concentration). It was shown that 
for these systems the criterion of the sign of dQ/dT generally gives the necessary - but not 
the sufficient - conditions of stability /7/. This criterion gives the sufficient conditons 
of stability when the relaxation time of the concentration model is substantially less than 
that of the thermal model /7, 8/. On the other hand, numerous calculational experiments 
show that the criterion of the sign of dQ!dT obviously holds in an extremely wide class of 
cases. 

We will use the result of paras. 2 and 3 to investigate the thermal stability of the 
stationary state of an ideal-mixing exothermic reactor. We will consider the following 
dynamic reactor model: 

Here C and T are the vector of concentrations and temperature in the reactor, Cj, is 
the concentration of the j-th material at the reactor input, T, is the temperature at the 

reactor input, t is the time, HT.H, are the heat and material holding capacities, AH, is 
the thermal effect of the i-th reaction, C, is the heat capacity, h'r is the heat transfer 

coefficient, S is the specific surface of the heat transfer, T, is the coolant temperarze, 
7 is the conditional contact time, ri is the rate of the i-th reaction, u', is the rate 

of formation of the j-th matter, and (sz,) is the stoichiometric matrix. 
We will call system (4.2) a concentration modei with a fixed temperature T. 
Suppose (T,. C,) is the stationary solution of system (4.1), (4.2). The following theorem 

directly fellows from Theorem 1: 

Theorem 4. Suppose the stationary solution C, of the concentration model Cwher, T = T,) 

is asymptotically stable. Then the condition 

dQ dT (TS. C (T,)) .:; 0 (4.4) 

is the necessary condition of the stability of the solution (T,, C,). 
In Eq.(4.4) C(T) is the quasistationary concentration, determined by the equations 

Vj(T, C) - (Cl - Cjo)? = 0, j = 1,2. . ., 1 (4.5) 

Therefore, the criterion of the sign of dQdT generally gives the necessary condition of 
stability, if the stationary solution of the concentration model is asymptotically stable. 
We stress that this result holds without any demands on the relaxation time of theconcentration 
model. 

The asymptotic stability of the concentration model, which is required for the application 
of Theorem 4, holds in a wide class of cases (this also determines, first of all, the 
justification of separating the problem of thermal stability from the general problem of 
reactor stability). At the same time the presence of concentration stability can often be 
proved globally for a whole class of kinetic relations /9, lo/. 

TO use Theorem 2 (which formulates the sufficient conditions for stability) it is 
necessary to have, besides the proof of the asymptotic stability of the stationary solution 
of the concentration model, upper estimates of the parameters to and q also. Lyapunov's- 
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function method provides an effective approach to obtaining these estimates (and to proving 
the stability of the concentration model). We will write the equations of the concentration 
model 

dACj _ J AC. 
dt- 2 i$k.lc, - +- (4.1:) 

k=c, c 

i 

, aIt*, (T$. C$l 
P,:. = fT_ j=l,” ,..., 1 

c 
dC, 

), 

We will term the following system a shortened model: 

dACI i 

YE-== 2 pjkAC,;. 
k=l 

Theorem 5. Suppose the zero-th solution of 

dAC. 
I 

AC. 

+= P,l..2rC,-- +- 3 
c' 

(4.i) j=l,Z!:...,l 

sys tern 

is asyIIIptotically stable and a uniform positive definite Lyapunov function exists for this 
system which satisfies estimate (3.32) (with z replaced by AC). and inequalities 14.4) 
hold and 

l$(T,.C'(T.)) ;++<~(RI,.ii,) (i.9) 

Then the staticrzry state of system !4.i)-(4.3) is asYmptotically stable. 

Proof. It follows fron the cr.iformitj of l-(AC) that I‘(.!JC) = (aVirlC‘(~Cj)3C. We wil; 
obtain, ar, es timate fcr dl.dl by virtue of Eqs.:4.6) 

cj ! 
--t+&p&_-&: (1, -T) 1. 
d$ 

< (Tfi--)f' 
Hc?T: H,T" 

_;<I 
< 1 

The statenefit of tl;e tkoren 1s r.0~ a Direct corciiary of Theorem 3. 
Consider the class cf kinetic relatlsrz which satisfy the relations 

Note that C4.lO; hoids if there is no astocatalysis and each rate of reaction ir, each 
direction is deterkneE by one "lfafing" cot,-rr.ezt. 

For this class, as is weli %~c;;r. a,lr? easi;y ver;Eiej, 1‘ z X ! 3Cj i is a Lyapunov fzsctlor. 
of the shortened no&i (4.7). We cab. als; skew that q’ = 2’:. Thins, for this classofkinetic 
reiatior.s conditiG: (4.0) takes the fcrrr. 

1% :;lJJ:*Iz ,.<zfR.,.i'., 

Condition (4.9) (ass.zrr:n-~ t?..at d(l dT < il) is eq.zivaler.t tc the condito:. 

I 
7-;' 'iih'Q.ii'] lli(~~.'il- 

c 

K,.?T 
-;--_+?$~l 

t 
(G.ll] 

where T' = HTT.&;,. T- = ii.~ (these ci_ar.tit;es CX. be considered the time cor.sra!its of the 
ther15al and concer,tratisn rT.=5eis). 

For a catalytic rfziCtcr sfter. 

li7.cl 
"7_+i“l F dT <3. R,>l, q'G2 

Then condition (4.11) wiil hoI5 if T'"T'<Q.n@j. The latter condition usually holds (in 
,I@,' an example is ciiscusse< fcr which i= 1 ard T” r’ = O.Wrrs 

In cases whe:, there are fit? analytical results, experimental data can be included to justif 

the use of Theore% .I and 2. Suppose kinetic analyses are carried out in a circulating 
laboratory reactor which operates in a mode that is close to that of ideal mixing /ll/. Ir. 
such a reactor the heat transfer conditions are usually vexy good and we can, ir. Conformity 
with the definition of stability, confine ourselves to the concer.tration equations which in 
this case are the same as industrial. ones for laboratory apparatus. It therefore follows 

from the stability of the stationary mode of the laboratary reactor that the concentration 
model of the industrial process (fcr equa:ity of T ant! C,,) is stable. At the same time 

the quantities fD arZ p caya bf estiEete< using dynamic experimental data of rhe laborat=? 
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apparatus. 
If the concentration models of the laboratory and industrial reactors are different, the 

matter is more complex. Here also, however, experiments in the laboratory reactor can in 
some cases provide useful information for the application of Theorems 1 and 2. For example, 
for the case of a flowing-circulation laboratory reactor, as we can show, the following 
formula connecting the characteristic values holds: 

1 + rlR,P' f--Y 
Y - 7 g (P') = i + rH,p” (4.12) 

where p’.p’ are characteristic values of p for the transmitting functions of the laboratory 
and industrial reactors, g(p)I is the transmitting function of the feedback section in the 
laboratory reactor (I is a unit matrix), and y is the ratio of the flow at the input to the 
laboratory reactor to the flow which passes through the reaction volume. It is assumed that 
the industrial reactor operates for the same Cl0 as a laboratory reactor, and has T = r,/y, 

where r0 is the conditional contact time for the reaction volume of the laboratory reactor. 

5. The importance of the conditions of stability obtained is determined in the following 
way. 

The conditions of stabilit: obtained on the basis of the quasistationarity principle 
have a physical meaning in a number of cases and enable us to obtain estimates of a general 
character. In particular, the criterion of the sign of the derivative dQ.!dT in the problem 
of estimating the thermal stability of the reactor has a physical meaning. 

One can also note the calculational simplicity of examining stability on the basis of 
conditions determined by Theorems land 2, which is particularly useful for a large-size Z- 
system and the necessity for frequent calculations of the stability of the stationary states 
of the process (with different parameters). The latter occurs, for example, if the process 
is optimized and the condition of stability figures as one of the optimization limitations 
/12/. 

Finally, the conditions of stability obtained can be used to a certain extent when the 
dynamic equations of the object are not completely known. To use Theorems 1 and 2 it is 
sufficient to know the dynamic equations only for Yt* The remaining equations can be 

stationary if the estimates of the parameters to and q are known from the experimental data 
or by analogy with other processes. 
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